Extensions 1→N→G→Q→1 with N=C33 and Q=C2xD4

Direct product G=NxQ with N=C33 and Q=C2xD4
dρLabelID
D4xC32xC6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=C33 and Q=C2xD4
extensionφ:Q→Aut NdρLabelID
C33:(C2xD4) = S3xS3wrC2φ: C2xD4/C1C2xD4 ⊆ Aut C33128+C3^3:(C2xD4)432,741
C33:2(C2xD4) = C6xS3wrC2φ: C2xD4/C2D4 ⊆ Aut C33244C3^3:2(C2xD4)432,754
C33:3(C2xD4) = C2xC33:D4φ: C2xD4/C2D4 ⊆ Aut C33244C3^3:3(C2xD4)432,755
C33:4(C2xD4) = C2xC32:2D12φ: C2xD4/C2D4 ⊆ Aut C33248+C3^3:4(C2xD4)432,756
C33:5(C2xD4) = S3xD6:S3φ: C2xD4/C2C23 ⊆ Aut C33488-C3^3:5(C2xD4)432,597
C33:6(C2xD4) = S3xC3:D12φ: C2xD4/C2C23 ⊆ Aut C33248+C3^3:6(C2xD4)432,598
C33:7(C2xD4) = D6:4S32φ: C2xD4/C2C23 ⊆ Aut C33248+C3^3:7(C2xD4)432,599
C33:8(C2xD4) = D6:S32φ: C2xD4/C2C23 ⊆ Aut C33488-C3^3:8(C2xD4)432,600
C33:9(C2xD4) = (S3xC6):D6φ: C2xD4/C2C23 ⊆ Aut C33248+C3^3:9(C2xD4)432,601
C33:10(C2xD4) = C3:S3:4D12φ: C2xD4/C2C23 ⊆ Aut C33248+C3^3:10(C2xD4)432,602
C33:11(C2xD4) = C3xS3xD12φ: C2xD4/C4C22 ⊆ Aut C33484C3^3:11(C2xD4)432,649
C33:12(C2xD4) = C3xD6:D6φ: C2xD4/C4C22 ⊆ Aut C33484C3^3:12(C2xD4)432,650
C33:13(C2xD4) = S3xC12:S3φ: C2xD4/C4C22 ⊆ Aut C3372C3^3:13(C2xD4)432,671
C33:14(C2xD4) = C3:S3xD12φ: C2xD4/C4C22 ⊆ Aut C3372C3^3:14(C2xD4)432,672
C33:15(C2xD4) = C12:S32φ: C2xD4/C4C22 ⊆ Aut C3372C3^3:15(C2xD4)432,673
C33:16(C2xD4) = C12:3S32φ: C2xD4/C4C22 ⊆ Aut C33484C3^3:16(C2xD4)432,691
C33:17(C2xD4) = C6xD6:S3φ: C2xD4/C22C22 ⊆ Aut C3348C3^3:17(C2xD4)432,655
C33:18(C2xD4) = C6xC3:D12φ: C2xD4/C22C22 ⊆ Aut C3348C3^3:18(C2xD4)432,656
C33:19(C2xD4) = C3xS3xC3:D4φ: C2xD4/C22C22 ⊆ Aut C33244C3^3:19(C2xD4)432,658
C33:20(C2xD4) = C3xDic3:D6φ: C2xD4/C22C22 ⊆ Aut C33244C3^3:20(C2xD4)432,659
C33:21(C2xD4) = C2xC33:6D4φ: C2xD4/C22C22 ⊆ Aut C33144C3^3:21(C2xD4)432,680
C33:22(C2xD4) = C2xC33:7D4φ: C2xD4/C22C22 ⊆ Aut C3372C3^3:22(C2xD4)432,681
C33:23(C2xD4) = C2xC33:8D4φ: C2xD4/C22C22 ⊆ Aut C3372C3^3:23(C2xD4)432,682
C33:24(C2xD4) = S3xC32:7D4φ: C2xD4/C22C22 ⊆ Aut C3372C3^3:24(C2xD4)432,684
C33:25(C2xD4) = C3:S3xC3:D4φ: C2xD4/C22C22 ⊆ Aut C3372C3^3:25(C2xD4)432,685
C33:26(C2xD4) = C62:23D6φ: C2xD4/C22C22 ⊆ Aut C3336C3^3:26(C2xD4)432,686
C33:27(C2xD4) = C2xC33:9D4φ: C2xD4/C22C22 ⊆ Aut C3348C3^3:27(C2xD4)432,694
C33:28(C2xD4) = C62:24D6φ: C2xD4/C22C22 ⊆ Aut C33244C3^3:28(C2xD4)432,696
C33:29(C2xD4) = C3xC6xD12φ: C2xD4/C2xC4C2 ⊆ Aut C33144C3^3:29(C2xD4)432,702
C33:30(C2xD4) = C6xC12:S3φ: C2xD4/C2xC4C2 ⊆ Aut C33144C3^3:30(C2xD4)432,712
C33:31(C2xD4) = C2xC33:12D4φ: C2xD4/C2xC4C2 ⊆ Aut C33216C3^3:31(C2xD4)432,722
C33:32(C2xD4) = S3xD4xC32φ: C2xD4/D4C2 ⊆ Aut C3372C3^3:32(C2xD4)432,704
C33:33(C2xD4) = C3xD4xC3:S3φ: C2xD4/D4C2 ⊆ Aut C3372C3^3:33(C2xD4)432,714
C33:34(C2xD4) = D4xC33:C2φ: C2xD4/D4C2 ⊆ Aut C33108C3^3:34(C2xD4)432,724
C33:35(C2xD4) = C3xC6xC3:D4φ: C2xD4/C23C2 ⊆ Aut C3372C3^3:35(C2xD4)432,709
C33:36(C2xD4) = C6xC32:7D4φ: C2xD4/C23C2 ⊆ Aut C3372C3^3:36(C2xD4)432,719
C33:37(C2xD4) = C2xC33:15D4φ: C2xD4/C23C2 ⊆ Aut C33216C3^3:37(C2xD4)432,729


׿
x
:
Z
F
o
wr
Q
<