extension | φ:Q→Aut N | d | ρ | Label | ID |
C33:(C2xD4) = S3xS3wrC2 | φ: C2xD4/C1 → C2xD4 ⊆ Aut C33 | 12 | 8+ | C3^3:(C2xD4) | 432,741 |
C33:2(C2xD4) = C6xS3wrC2 | φ: C2xD4/C2 → D4 ⊆ Aut C33 | 24 | 4 | C3^3:2(C2xD4) | 432,754 |
C33:3(C2xD4) = C2xC33:D4 | φ: C2xD4/C2 → D4 ⊆ Aut C33 | 24 | 4 | C3^3:3(C2xD4) | 432,755 |
C33:4(C2xD4) = C2xC32:2D12 | φ: C2xD4/C2 → D4 ⊆ Aut C33 | 24 | 8+ | C3^3:4(C2xD4) | 432,756 |
C33:5(C2xD4) = S3xD6:S3 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:5(C2xD4) | 432,597 |
C33:6(C2xD4) = S3xC3:D12 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:6(C2xD4) | 432,598 |
C33:7(C2xD4) = D6:4S32 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:7(C2xD4) | 432,599 |
C33:8(C2xD4) = D6:S32 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 48 | 8- | C3^3:8(C2xD4) | 432,600 |
C33:9(C2xD4) = (S3xC6):D6 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:9(C2xD4) | 432,601 |
C33:10(C2xD4) = C3:S3:4D12 | φ: C2xD4/C2 → C23 ⊆ Aut C33 | 24 | 8+ | C3^3:10(C2xD4) | 432,602 |
C33:11(C2xD4) = C3xS3xD12 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:11(C2xD4) | 432,649 |
C33:12(C2xD4) = C3xD6:D6 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:12(C2xD4) | 432,650 |
C33:13(C2xD4) = S3xC12:S3 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:13(C2xD4) | 432,671 |
C33:14(C2xD4) = C3:S3xD12 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:14(C2xD4) | 432,672 |
C33:15(C2xD4) = C12:S32 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:15(C2xD4) | 432,673 |
C33:16(C2xD4) = C12:3S32 | φ: C2xD4/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:16(C2xD4) | 432,691 |
C33:17(C2xD4) = C6xD6:S3 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 48 | | C3^3:17(C2xD4) | 432,655 |
C33:18(C2xD4) = C6xC3:D12 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 48 | | C3^3:18(C2xD4) | 432,656 |
C33:19(C2xD4) = C3xS3xC3:D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:19(C2xD4) | 432,658 |
C33:20(C2xD4) = C3xDic3:D6 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:20(C2xD4) | 432,659 |
C33:21(C2xD4) = C2xC33:6D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 144 | | C3^3:21(C2xD4) | 432,680 |
C33:22(C2xD4) = C2xC33:7D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:22(C2xD4) | 432,681 |
C33:23(C2xD4) = C2xC33:8D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:23(C2xD4) | 432,682 |
C33:24(C2xD4) = S3xC32:7D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:24(C2xD4) | 432,684 |
C33:25(C2xD4) = C3:S3xC3:D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 72 | | C3^3:25(C2xD4) | 432,685 |
C33:26(C2xD4) = C62:23D6 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 36 | | C3^3:26(C2xD4) | 432,686 |
C33:27(C2xD4) = C2xC33:9D4 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 48 | | C3^3:27(C2xD4) | 432,694 |
C33:28(C2xD4) = C62:24D6 | φ: C2xD4/C22 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:28(C2xD4) | 432,696 |
C33:29(C2xD4) = C3xC6xD12 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C33 | 144 | | C3^3:29(C2xD4) | 432,702 |
C33:30(C2xD4) = C6xC12:S3 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C33 | 144 | | C3^3:30(C2xD4) | 432,712 |
C33:31(C2xD4) = C2xC33:12D4 | φ: C2xD4/C2xC4 → C2 ⊆ Aut C33 | 216 | | C3^3:31(C2xD4) | 432,722 |
C33:32(C2xD4) = S3xD4xC32 | φ: C2xD4/D4 → C2 ⊆ Aut C33 | 72 | | C3^3:32(C2xD4) | 432,704 |
C33:33(C2xD4) = C3xD4xC3:S3 | φ: C2xD4/D4 → C2 ⊆ Aut C33 | 72 | | C3^3:33(C2xD4) | 432,714 |
C33:34(C2xD4) = D4xC33:C2 | φ: C2xD4/D4 → C2 ⊆ Aut C33 | 108 | | C3^3:34(C2xD4) | 432,724 |
C33:35(C2xD4) = C3xC6xC3:D4 | φ: C2xD4/C23 → C2 ⊆ Aut C33 | 72 | | C3^3:35(C2xD4) | 432,709 |
C33:36(C2xD4) = C6xC32:7D4 | φ: C2xD4/C23 → C2 ⊆ Aut C33 | 72 | | C3^3:36(C2xD4) | 432,719 |
C33:37(C2xD4) = C2xC33:15D4 | φ: C2xD4/C23 → C2 ⊆ Aut C33 | 216 | | C3^3:37(C2xD4) | 432,729 |